Syllabus for

CHE 212—Organic Chemistry II Laboratory

1.0 Credit Hour Spring 2001

I. COURSE DESCRIPTION

Emphasizes the analysis of unknown organic mixtures. These mixtures are representative of the major functional group differences. Uses various spectroscopic instrumental methods in the analysis, (NMR, IR, UV, and mass spectrometry). (One recitation and one 3-hour lab per week.) Prerequisites: CHE 211 Lecture and Lab or permission of instructor.

Co requisite: CHE 212 Lecture.

Lab fee: \$30.

Organic Chemistry 212 lab is an inseparable and indispensable part of CHE 212 lecture. This is a second-semester course in organic chemistry laboratory that is especially designed to illustrate the chemical reactions and properties of molecules discussed in lecture, and to help students learn them. Many basic reaction mechanisms are discussed and demonstrated in the laboratory. This course consists of organic qualitative analysis, and interpretation of various kinds of spectra (NMR, IR, UV and MS).

II. COURSE GOALS

The purpose of this course is to equip the student with the ability to demonstrate proficiency in making scientific observations, and in using scientific instruments and techniques. Upon completion of this course, the student will also show a proficiency in controlling and directing chemical reactions.

III. COURSE OBJECTIVES

A. Terminal Objectives

As a result of successfully completing this course, the student will be able to do the following:

- 1. Conduct a benzoin condensation synthesis.
 - a. Describe the chemical reaction involved in benzoin condensation.
 - b. Interpret infrared spectra of benzoin and benzaldehyde.
- 2. Conduct an aldol condensation.
 - a. Explain mechanism of reaction
 - b. Explain difference between aldol and crossed aldol condensations.
 - c. Interpret the infrared spectra of the product.
- 3. Synthesize **methyl salicylate**, via an esterification reaction.
 - a. Review chemistry of esters.
 - b. Synthesize methyl salicylate from salicylic acid via an esterification reaction.
 - c. Compare the synthesis of aspirin to that of methyl saliyclate.
 - d. Discuss the reverse of esterification hydrolysis
 - e. Describe the reaction mechanism involved in esterification.

4. Synthesize **polymers.**

- a. Prepare polymers using simple chemical reactions.
- b. Compare three different kinds of polymers condensation, addition and cross-linked polymers.

- c. List a few applications of polymers in every day life.
- d. Compare the properties of polyester and polyamide.
- e. Read essay, Polymers and Plastics (pg.467-475).
- 5. Conduct the analysis of different compounds using **spectroscopic** techniques.
 - a. Explain the theory and application of NMR, IR and UV-vis spectroscopy.
 - b. Use spectroscopy techniques to identify the structure of unknown compounds.
- 6. Conduct a qualitative organic analysis on unknown compounds.
 - a. Identify the structure and name of unknown compounds, using a variety of tests.
 - b. Use spectral data provided to aid in the identification of the unknowns.

IV. TEXTBOOKS

A. Required Textbooks

1. Pavia, Donald., Lampman, Gary. <u>Introduction to Organic Laboratory Techniques</u>. Orlando: Saunders, 1998.

B. Required Materials

- 1. Laboratory notebook (bound notebook)
- 2. Safety glasses
- 3. Laboratory coat or apron (to be provided)

V. POLICIES AND PROCEDURES

A. University Policies and Procedures

- 1. Attendance at each class or laboratory is mandatory at Oral Roberts University.
- 2. Double cuts will be assessed for absences immediately preceding or following holidays.
- 3. Excessive absences can reduce a student's grade or deny credit for the course.
- 4. Students taking a late exam because of an unauthorized absence will be charged a late exam fee.
- 5. Students and faculty at Oral Roberts University adhere to all laws addressing the ethical use of others' materials, whether it is in the form of print, video, multimedia, or computer software.
- 6. Final exams cannot be given before their scheduled times. Students need to check the final exam schedule before planning return flights or other events at the end of the semester.

B. Department Policies and Procedures

- 1. If a student misses the scheduled laboratory period, the student receives a zero for that lab and is not allowed to make up the work. Protective wear is mandatory in the laboratory.
- 2. The student is responsible for the material and should make arrangements with the instructor to go over the material should there be any questions.
- 3. The student is allowed to drop the lowest lab and quiz score, for grading purposes, and an excused absence is not held against the student.

C. Course Policies and Procedures

1. Evaluation Procedures

Points

2

a.	Unknown identification, laboratory experiments, and reports				
b.	Exams and quizzes				
c.	Notebook				
d	Laboratory technique				
	Total F	Points	1000		
e.	The semester's grade based on A - F is determined by the following				
	scale:				
	Α	90 - 100%			
	В	80 - 89%			
	C	70 - 79%			
	D	60 - 69%			
	F	Below 60%			

The instructor reserves the right to change the syllabus.

VI. COURSE CALENDAR

WEEK	_	EXPERIMENTS*			
(PART	I)				
1.	Check in and general guidelines				
2.	Coenzyme Synthesis of Benzoin	40			
3.	Aldol Condensation	48			
4.	Methyl Salicylate (oil of Wintergreen)	10			
5.	Preparation of Polymers	56			
6.	Morrison and Boyd Ch.17 and Handout (Spectroscopy)				
7.	Midterm and Introduction to Part II	57			
(PART II)					
8. – 13. Organic Qualitative Analysis					
	Read and Study carefully the Chapter 57A to 57I				

14. Check out, and Final Exam

^{*}Experimental numbers correspond to chapters in the textbook. For Part II, refer to Expt. 57A to I, Appendix numbers 1 and 2 in Pavia, Lampman, Kriz, and Engel.

ASSESSMENT SUMMARY

Ablin, Dr. Lois	CHE 212	Organic Chemistry II Lab	Chemistry Name of Department
Name of Instructor	Course #	Title of Course	Name of Department
MISSION	MAJOR OUTCOMES	COURSE GOALS	ASSESSMENT OF COURSE
The lifestyle at ORU is rooted in	1.Critical Thinking/Problem Solving	Demonstrate proficiency in	<u>GOALS</u>
the word "Wholeness." ORU	Graduate students with working knowledge of	manipulation of laboratory	
seeks to educate the whole person,	chemical concepts and marketable skills.	apparatus, instruments, and	<u>STIMULI</u>
with balanced emphasis placed on	Analyze chemical problems and offer solutions.	techniques used in organic	
the development of the mind,	2.Communication	laboratories.	Written laboratory reports
spirit, and body.	Communicate effectively and scientifically		
GENERAL OUTCOMES	using the language, concepts, and models of	Demonstrate ability to synthesize,	Examinations
1. Spiritual Development	chemistry.	purify, and identify organic	
2. Physical Development	3.Analysis	compounds.	Lab technique
3. Communication	Exhibit competency in researching the literature		
4. Analysis	and use of the information to analyze and	Communicate knowledge of	Lab conduct
5. Problem Solving	interpret data and strategies.	experimental safety hazards and	
6. Valuing in Decision-making	4. Valuing in Decision-Making	methods used to avoid them.	<u>CRITERIA</u>
7. Social Interaction	Demonstrate and assess safe laboratory		
8. Global Perspectives	techniques, procedures, and make sound	Perform qualitative organic	Teacher assessment
9. Effective Citizenship	scientific decisions about the use of chemicals.	analysis to identify an unknown	
10. Aesthetic Responsiveness	5,Global Perspective	compound using wet chemical and	
	Graduate globally minded students who choose	spectroscopic techniques.	
	to use their knowledge and experience to		
	improve life of other people in various parts of		
	the world. (Also working with mission team.)		